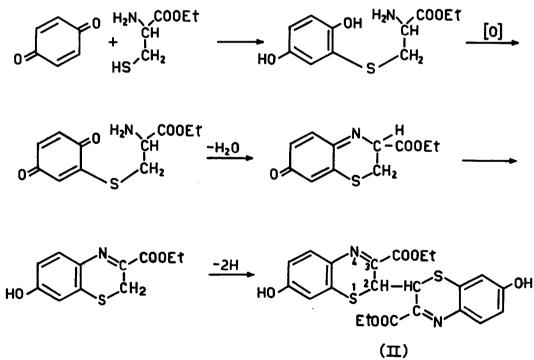

A REINVESTIGATION OF THE REACTION OF <u>p</u>-BENZOQUINONE WITH CYSTEINE ETHYL ESTER: REVISION OF A STRUCTURAL ASSIGNMENT G. Prota and E. Ponsiglione Istituto di Chimica Organica dell'Università, Via L. Rodind 22 - 80138 Naples, Italy (Received in UK 17 February 1972; accepted for publication 24 February 1972)


It has been reported^{1,2} that cysteine and its ethyl ester react with 1,4-benzoquinones to give mainly cyclic iminoquinones of the type (I). In the light of more recent work^{3,4} on similar reactions in the o-quinone series, the isolation of such unstable products appeared improbable, particularly when the previous structure assignment was indefinite. Accordingly, we have repeated the reaction of <u>p</u>-benzoquinone with L-cysteine exactly as originally described by Kuhn¹, and have obtained as reported a dark-brown

amorphous powder, rather insoluble in common organic solvents, but soluble in dilute alkalies. However, by t.l.c. on Kiesegel $F_{2.54}$ (eluent: CHCl₃-MeOH 88:12,v/v) it was found that the product was in fact a complex mixture of substances and it was not further investigated.

Reaction of <u>p</u>-benzoquinone with L-cysteine ethyl ester was reported¹ to give a yellow crystalline substance, m.p. 300° (dec.) in 33% yield. The proposed structure (I) (R,R'=H; R''=C₂H₅) cannot account for a broad absorption band at 3250 cm⁻¹ in the IR spectrum (Nujol) of the reaction product; in addition there is no absorption frequency attributable to the quinonoid system proposed in (I). Moreover, t.l.c. on silica (CHCl₃-MeOH, 95:5, v/v) showed that the product was a mixture of two yellow substances A (R_f=0.30) and B (R_f=0) which could be isolated making use of their different solubilities in methanol. The UV spectrum of compound A, λ_{max} (MeOH) 368, 274 and 245 nm (log ϵ 3.09, 3.36 and 3.43) was almost identical with that of compound B, λ_{max} (MeOH) 366, 272 and 246 nm (log ϵ 3.07, 3.34 and 3.39), being the chromophore closely reminiscent with that characteristic of 2H--1,4-benzothiazines⁵. Elemental analyses and mass spectrometry⁶ showed that the two products were indeed isomers with the molecular formula $C_{22}H_{20}N_2O_6S_2$.

On this basis we assumed that A and B were the two possible diastereoisomers corresponding to the gross⁷ structure (II), arising most probably by initial condensation of <u>p</u>-benzoquinone with cysteine ethyl ester, followed by oxidative coupling of the resulting 2H-1,4-benzothiazine intermediate (Scheme I).

SCHEME I

Because of the unfavourable solubility properties, an NMR spectrum of compound B could not be obtained, but the NMR spectrum⁶ of the isomer A, measured in $(CD_3)_2SO$, was in complete agreement with the symmetrical structure (II). Apart from the signals arising from the two carbethoxyl groups, the spectrum exhibits a sharp singlet at 4.09 δ (2H), which is assigned to the C-2 protons of the thiazine rings⁵, a singlet at 6.74 δ for the two aromatic protons at C-8, a doublet of doublets at 6.82 δ (J 8.0 and 2.2 Hz) for the protons at C-6, and a doublet at 7.45 δ (J 8.0 Hz) which accounts for the remaining protons at C-5.

Thus, the results of this investigation provides evidence that the reaction of 1,4-benzoquinones with L-cysteine ethyl ester follows a pathway which is essentially similar to that observed in the o-quinone series.

<u>Acknowledgement</u>. - This investigation was supported in part by a grant from <u>Laboratorio per la Chimica e Fisica di Molecole di Interesse Biologico</u> <u>del C.N.R.</u>, Naples (Italy).

REFERENCES

- 1. R. Kuhn and H. Beinert, Ber. 77, 606 (1944).
- 2. R. Kuhn and I. Hammer, Ber., 84, 91 (1951).
- 3. W.S. Powel and R.A. Heacock, Can. J. Chem., 47, 2102 (1969).
- G. Prota, O. Petrillo, C. Santacroce and D. Sica, <u>J. Heterocyclic Chem.</u>, 7, 555 (1970).
- 5. D. Sica, C. Santacroce and G. Prota, <u>J. Heterocyclic Chem.</u>, <u>7</u>, 1143 (1970).
- 6. Elemental analyses gave for compound A : C, 55.52; H, 4.65; N, 5.93;
 S, 13.32%; M⁺ 472, and for compound B : C, 55.72; H, 4.68; N, 5.89;
 S, 13.29%; M⁺ 472, C₂₂H₂₀N₂O₆S₂ requires : C, 55.91; H, 4.27; N, 5.93;
 S, 13.57%; M 472.

The mass spectra were obtained with an AEI MS-902 spectrometer using

the direct inlet system at an ionization potential of 70 eV (probe temperature 230° ca.).

- 7. The relative stereochemistry of the bi-henzothiszine isomers (TT) has not yet been investigated.
- 8. The NMR spectrum was recorded with a Perkin-Elmer R-12A spectrometer with internal TMS reference.